Adding Like Fractions and **Mixed Numbers**

Like fractions have the same denominator. Add like fractions by adding the numerators. Use the same denominator.

Add.
$$\frac{5}{8} + \frac{1}{8}$$

Add the numerators. Write the common denominator. Reduce to lowest terms.

$$\frac{5+1}{8} = \frac{6}{8}$$
$$\frac{6}{8} = \frac{3}{4}$$

Add mixed numbers the same way. Regroup, if needed.

Add.
$$3\frac{4}{5} + 4\frac{2}{5}$$

Add the whole numbers. Add the fractions.

$$3\frac{4}{5} + 4\frac{2}{5} = 7\frac{6}{5}$$

Regroup the improper fraction. Add the whole numbers.

$$7 + 1\frac{1}{5} = 8\frac{1}{5}$$

Add the fractions. Reduce your answer to lowest terms, if possible.

1.
$$\frac{1}{2} + \frac{1}{2} =$$

2.
$$\frac{5}{8} + \frac{2}{8} =$$

3.
$$\frac{1}{4} + \frac{2}{4} =$$

3.
$$\frac{1}{4} + \frac{2}{4} =$$
 4. $\frac{3}{10} + \frac{8}{10} =$

5.
$$\frac{5}{6} + \frac{2}{6} =$$

6.
$$\frac{4}{5} + \frac{1}{5} =$$

7.
$$\frac{2}{3} + \frac{2}{3} =$$

6.
$$\frac{4}{5} + \frac{1}{5} =$$
 7. $\frac{2}{3} + \frac{2}{3} =$ **8.** $\frac{15}{24} + \frac{22}{24} =$

Add the mixed numbers. Reduce your answer to lowest terms, if possible.

9.
$$6\frac{3}{4} + 1\frac{1}{4} =$$

10.
$$9\frac{5}{6} + 2\frac{2}{6} =$$

11.
$$1\frac{2}{5} + 4\frac{1}{5} =$$

9.
$$6\frac{3}{4} + 1\frac{1}{4} =$$
 10. $9\frac{5}{6} + 2\frac{2}{6} =$ **11.** $1\frac{2}{5} + 4\frac{1}{5} =$ **12.** $6\frac{2}{10} + 5\frac{7}{10} =$

13.
$$10\frac{7}{8}$$
 + $5\frac{4}{8}$

4.
$$13\frac{2}{3}$$
 $+34\frac{1}{3}$

15.
$$18\frac{6}{10} + 40\frac{1}{10}$$

16.
$$40\frac{5}{15}$$
 + $67\frac{3}{15}$

13.
$$10\frac{7}{8}$$
 14. $13\frac{2}{3}$ **15.** $18\frac{6}{10}$ **16.** $40\frac{5}{15}$ **17.** $125\frac{3}{5}$ $+ 5\frac{4}{8}$ $+ 34\frac{1}{3}$ $+ 40\frac{1}{10}$ $+ 67\frac{3}{15}$ $+ 25\frac{2}{5}$

Solve.

18. A dressmaker is making two costumes for a play. She needs to buy fringe. One costume requires $\frac{6}{8}$ yard of fringe. The other needs $\frac{4}{8}$ yard of fringe.

How much fringe should she buy? _____

<u>Directions:</u> Choose the <u>one best answer</u> to each item. Circle the number of the correct answer.

- 19. A jeweler is making a beaded necklace and a matching bracelet. She needs $1\frac{2}{3}$ ft of string for the necklace and $\frac{2}{3}$ ft of string for the bracelet. How much total string does she need?
 - (1) $2\frac{2}{3}$ ft
 - (2) $\frac{4}{3}$ ft
 - (3) $2\frac{1}{3}$ ft
 - (4) 3 ft
 - (5) $\frac{5}{3}$ ft
- **20.** Dominic ran $3\frac{1}{2}$ mi on Monday. On Tuesday he ran 4 mi. How many total miles did Dominic run in the two days?
 - (1) 8 mi
 - (2) $\frac{8}{2}$ mi
 - (3) $7\frac{1}{2}$ mi
 - (4) $1\frac{1}{2}$ mi
 - (5) 4 mi
- **21.** Ms. Burg noticed that she needed oil for three science experiments. She needed $3\frac{1}{4}$ c (cups), $2\frac{3}{4}$ c, and $1\frac{1}{4}$ c. How much oil will she need for the three experiments?
 - (1) 6 c
 - (2) $6\frac{6}{4}$ c
 - (3) $6\frac{1}{4}$ c
 - (4) $7\frac{1}{4}$ c
 - (5) 7 c

- 22. A printer needs $\frac{5}{8}$ in. margin on each side of his paper. What is the total space needed for the two margins?
 - (1) $1\frac{1}{4}$ in.
 - (2) $\frac{10}{16}$ in.
 - (3) $1\frac{3}{8}$ in.
 - (4) $\frac{25}{8}$ in.
 - (5) $1\frac{1}{3}$ in.
- 23. The Terrence family went on two daytrips during the summer. They traveled $35\frac{1}{2}$ mi on the first trip and $59\frac{1}{2}$ mi on the second trip. How many total miles did the family travel for the two trips?
 - (1) $95\frac{2}{2}$ mi
 - (2) 24 mi
 - (3) $94\frac{2}{4}$ mi
 - (4) 95 mi
 - (5) none of the above
- **24.** The child grew $\frac{1}{4}$ in. in January, $\frac{3}{4}$ in. in February, $\frac{1}{4}$ in. in March, and $\frac{2}{4}$ in. in April. What was the total amount he grew during February, March, and April?
 - (1) $1\frac{3}{4}$ in.
 - (2) $1\frac{1}{4}$ in.
 - (3) $1\frac{1}{2}$ in.
 - (4) $2\frac{3}{4}$ in.
 - (5) 8 in.
- **25.** The chef needs $\frac{3}{4}$ tbs (tablespoon) of cinnamon for one recipe and $1\frac{1}{4}$ tbs for the other. How many tablespoons of cinnamon does he need for both recipes?
 - (1) 2 tbs
 - (2) $1\frac{3}{4}$ tbs
 - (3) $1\frac{1}{4}$ tbs
 - (4) $\frac{3}{4}$ tbs
 - (5) 3 tbs