Raising to Higher Terms

You can make equivalent fractions by raising to **higher terms**. Raise to higher terms by multiplying the numerator and the denominator by the same number.

Raise $\frac{1}{3}$ to higher terms.

Multiply the numerator and denominator by 4. $\frac{1}{3}$ and $\frac{4}{12}$ are equivalent.

 $\frac{1\times4}{3\times4} = \frac{4}{12}$

Raise $\frac{1}{2}$ to higher terms.

Multiply the numerator and denominator by 3. $\frac{1}{2}$ and $\frac{3}{6}$ are equivalent.

 $\frac{1\times3}{2\times3}=\frac{3}{6}$

Find the missing numerator or denominator for the equivalent fractions.

1.
$$\frac{1}{2} = \frac{2}{3}$$

2.
$$\frac{6}{8} = \frac{24}{8}$$

3.
$$\frac{2}{9} = \frac{2}{27}$$

4.
$$\frac{10}{30} = \frac{40}{80}$$

5.
$$\frac{8}{10} = \frac{10}{50}$$

6.
$$\frac{3}{7} = \frac{1}{21}$$

7.
$$\frac{1}{8} = \frac{5}{11}$$

8.
$$\frac{4}{5} = \frac{20}{20}$$

Are the fractions equivalent? Write yes or no.

9.
$$\frac{7}{8}$$
 and $\frac{28}{32}$ _____

10.
$$\frac{5}{6}$$
 and $\frac{25}{24}$ _____

11.
$$\frac{1}{4}$$
 and $\frac{5}{16}$ _____

12.
$$\frac{12}{15}$$
 and $\frac{24}{30}$

13.
$$\frac{3}{6}$$
 and $\frac{9}{12}$ _____

14.
$$\frac{1}{2}$$
 and $\frac{50}{100}$ _____

Write the next two fractions to continue the pattern.

15.
$$\frac{1}{2}$$
, $\frac{3}{6}$, $\frac{9}{18}$, ...,

16.
$$\frac{2}{3}$$
, $\frac{4}{6}$, $\frac{8}{12}$,

17.
$$\frac{1}{6}$$
, $\frac{2}{12}$, $\frac{3}{18}$, ...,

18.
$$\frac{1}{4}$$
, $\frac{3}{12}$, $\frac{9}{36}$,

20.
$$\frac{2}{7}$$
, $\frac{4}{14}$, $\frac{8}{28}$,

<u>Directions</u>: Choose the <u>one best answer</u> to each item. Circle the number of the correct answer.

- **21.** Marty raised $\frac{2}{3}$ to higher terms and got $\frac{8}{12}$. What number did he multiply the numerator and denominator by?
 - (1) 1
 - (2) 2
 - (3) 3
 - (4) 4
 - (5) 5
- **22.** Leona works at a bakery. A customer wants to buy $\frac{1}{4}$ of a cake. The cake is already cut into eighths. How many eighths would make $\frac{1}{4}$ of the cake?
 - $(1) \frac{1}{8}$
 - (2) $\frac{2}{8}$
 - (3) $\frac{3}{8}$
 - $(4) \frac{4}{8}$
 - $(5) \frac{5}{8}$
- 23. In item 22, what number did Leona multiply the numerator and denominator of $\frac{1}{4}$ by to get the higher fraction?
 - (1) 2
 - (2) 3
 - (3) 4
 - (4) 5
 - (5) 6
- **24.** Bryan can easily sprint $\frac{3}{4}$ mile. Tim can sprint the same distance, but he measures it in eighths. How many eighths of a mile can Tim run?
 - (1) $\frac{1}{8}$
 - (2) $\frac{2}{8}$
 - (3) $\frac{3}{8}$
 - $(4) \frac{5}{8}$
 - $(5) \frac{6}{8}$

- **25.** Deb is writing a pattern. She starts with $\frac{1}{2}$ and then writes the equivalent fraction $\frac{2}{4}$. She then writes the equivalent fraction $\frac{4}{8}$. If she continues this pattern, what is the next equivalent fraction?
 - (1) $\frac{6}{12}$
 - (2) $\frac{8}{4}$
 - (3) $\frac{2}{3}$
 - $(4) \frac{8}{16}$
 - (5) none of the above
- **26.** To run a new lawn mower, you need to mix equal parts of oil and gasoline. You could choose from $\frac{1}{2}$, $\frac{4}{6}$, or $\frac{5}{8}$ quart of oil. You could choose from $\frac{3}{6}$, $\frac{4}{5}$, or $\frac{6}{8}$ quart of gasoline. Which oil and gasoline measurements are equivalent?
 - (1) $\frac{1}{2}$ qt oil and $\frac{3}{6}$ qt gasoline
 - (2) $\frac{5}{8}$ qt oil and $\frac{3}{6}$ qt gasoline
 - (3) $\frac{6}{8}$ qt gasoline and $\frac{4}{6}$ qt oil
 - (4) $\frac{1}{2}$ qt oil and $\frac{4}{5}$ qt gasoline
 - (5) $\frac{4}{5}$ qt gasoline and $\frac{5}{8}$ qt oil
- **27.** Three dimes are $\frac{3}{10}$ of a dollar. What equivalent fraction is 30 pennies?
 - (1) $\frac{3}{100}$
 - (2) $\frac{1}{3}$
 - $(3) \quad \frac{30}{100}$
 - $(4) \frac{10}{3}$
 - $(5) \frac{1}{2}$
- **28.** Marni measured $\frac{3}{4}$ inch on her blueprint. How many sixteenths does this represent?
 - $(1) \frac{1}{16}$
 - (2) $\frac{6}{16}$
 - (3) $\frac{9}{16}$
 - $(4) \frac{12}{16}$
 - $(5) \frac{16}{16}$