Dividing Fractions by Fractions

To divide a fraction by a fraction, first invert the divisor. **Invert** means to turn upside down, which gives the **reciprocal**. Then, change the operation sign to multiplication.

How many $\frac{1}{8}$ s are in $\frac{3}{4}$?

Divide. $\frac{3}{4} \div \frac{1}{8}$

Invert the divisor.

Change the operation sign.

Cancel if possible. Multiply.

$$\frac{3}{4} \times \frac{8}{1}$$

$$\frac{3}{\cancel{4}} \times \frac{\cancel{8}}{\cancel{1}} = \frac{6}{1} = 6$$

Look at the figures. Divide to solve the problems.

1.

How many $\frac{1}{4}$ s are there in $\frac{1}{2}$?

$$\frac{1}{2} \div \frac{1}{4} =$$

2.

How many $\frac{1}{6}$ s are there in $\frac{2}{3}$?

$$\frac{2}{3} \div \frac{1}{6} =$$

Write the reciprocal for each number.

3.
$$\frac{1}{2}$$

4.
$$\frac{4}{5}$$

6.
$$\frac{8}{9}$$

7.
$$\frac{6}{10}$$

Divide the fractions. Reduce your answer to lowest terms.

8.
$$\frac{1}{2} \div \frac{1}{6} =$$

9.
$$\frac{6}{8} \div \frac{5}{6} =$$

10.
$$\frac{2}{3} \div \frac{6}{7} =$$

11.
$$\frac{6}{10} \div \frac{1}{3} =$$

12.
$$\frac{1}{12} \div \frac{2}{3} =$$

13.
$$\frac{3}{4} \div \frac{8}{9} =$$

14.
$$\frac{2}{4} \div \frac{5}{6} =$$

15.
$$\frac{7}{8} \div \frac{1}{2} =$$

16.
$$\frac{2}{3} \div \frac{1}{3} =$$

17.
$$\frac{3}{12} \div \frac{1}{2} =$$

18.
$$\frac{9}{12} \div \frac{6}{7} =$$

19.
$$\frac{8}{9} \div \frac{1}{4} =$$

<u>Directions</u>: Choose the <u>one best answer</u> to each item. Circle the number of the correct answer.

- **20.** Liz is learning how to divide fractions. She must use the reciprocal of the divisor to rewrite the division problem as a multiplication problem. What reciprocal would she write for $\frac{2}{3}$ divided by $\frac{1}{2}$?
 - $(1) \frac{1}{2}$
 - (2) $\frac{3}{2}$
 - (3) $\frac{2}{1}$
 - $(4) \frac{2}{3}$
 - $(5) \frac{1}{3}$
- **21.** Raul is working on the blueprint for a house. He draws a line $\frac{6}{8}$ inch long. He wants to show beams every $\frac{1}{4}$ inch along this line. If he starts at one end of the line, how many beams can he mark off on the $\frac{6}{8}$ -inch line?
 - (1) 1 beam
 - (2) 2 beams
 - (3) 3 beams
 - (4) 4 beams
 - (5) 5 beams
- **22.** A woodworker is making a molding that is $\frac{3}{4}$ inch wide. He wants to divide it into $\frac{1}{8}$ -inch sections so that he can router the facets. How many facets will it have?
 - (1) 2 facets
 - (2) 3 facets
 - (3) 4 facets
 - (4) 5 facets
 - (5) 6 facets

- **23.** A ranger has $\frac{3}{4}$ acre of forest that she wants to divide into $\frac{1}{16}$ -acre campsites. How many campsites will she have?
 - (1) 3 campsites
 - (2) 6 campsites
 - (3) 9 campsites
 - (4) 12 campsites
 - (5) 15 campsites
- **24.** Ms. Dey is baking bread. She has $\frac{1}{2}$ cup of flour that needs to be split into $\frac{1}{4}$ -cup portions. How many portions will she have?
 - (1) 2 portions
 - (2) 3 portions
 - (3) 4 portions
 - (4) 5 portions
 - (5) 6 portions
- **25.** A community planning board purchased $\frac{7}{8}$ acre of land. They want to fence off $\frac{1}{16}$ -acre garden plots. How many garden plots can they make?
 - (1) 12 plots
 - (2) 13 plots
 - (3) 14 plots
 - (4) 15 plots
 - (5) 16 plots
- **26.** A store allows $\frac{2}{3}$ -hour for lunch break. A manager needs to schedule short shifts to cover each lunch break. The manager needs to divide the time into shifts of $\frac{1}{6}$ of an hour. How many shifts will he need to cover?
 - (1) 2 shifts
 - (2) 3 shifts
 - (3) 4 shifts
 - (4) 5 shifts
 - (5) 6 shifts